跳转至

剑指 Offer 42.连续子数组的最大和

题目描述

原题

输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。

要求时间复杂度为O\(n\)

示例1:

1
2
3
输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

提示:

  • 1 <= arr.length <= 10^5
  • -100 <= arr[i] <= 100

注意:本题与主站 53 题相同:https://leetcode-cn.com/problems/maximum-subarray/

题解

class Solution {
    public int maxSubArray(int[] nums) {
        if(nums == null || nums.length == 0) return 0;
        int dp = nums[0]; //以i结尾的最大子序列
        int max = dp;//最大值
        for(int i = 1;i < nums.length;i++){
            //如果dp小于等于0 则最大子序列是当前值
            if(dp <= 0){
                dp = nums[i]; 
            }else { //如果dp大于0
                dp += nums[i];
            }
            max = Math.max(max,dp);
        }
        return max;
    }
}